THE PREPARATION AND PRIMARY STRUCTURE OF S-PEPTIDES FROM DIFFERENT PANCREATIC RIBONUCLEASES

G.W. WELLING, G. GROEN, D. GABEL⁺, W. GAASTRA, J.J. BEINTEMA

Biochemisch Laboratorium, Rijksuniversiteit, Zernikelaan, Groningen, The Netherlands

Received 14 December 1973

1. Introduction

In 1955, Richards [1] described the isolation of 'an active intermediate produced during the digestion of ribonuclease by subtilisin'. The characterisation and separation of the non-covalently linked components was described 4 years later [2]. Ribonuclease S* possesses full enzymatic activity and the same holds for the enzyme reconstituted from S-peptide and S-protein. The involvement of S-peptide residues in the binding of S-peptide to S-protein and in the enzymatic activity of the reconstituted RNase S' has been studied by using synthetic S-peptide analogs [3,4] the cleavage by subtilisin takes place in an external loop. Klee [5] and Gold [6] did not succeed in cleaving the RNases from rat and snapping turtle with subtilisin. In this study, we present the successful cleavage with subtilisin Carlsberg of the RNase from goat, brindled gnu, giraffe, reindeer, dromedary, and red kangaroo and the isolation of the corresponding S-peptides. Differences in the observed behaviour are compared with predicted differences in conformation.

2. Materials and methods

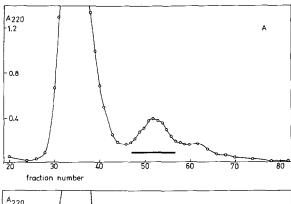
Bovine pancreatic ribonuclease was obtained from

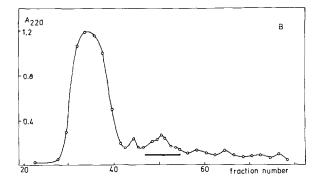
* Abbrevations:

RNase S — subtilisin-modified ribonuclease; S-peptide — the 20-redidue N-terminal peptide obtained from RNase S; S-protein — the protein component obtained from RNase S; RNase S' — the reconstituted enzyme obtained by mixing equimolar amounts of S-peptide and S-protein.

Miles—Seravac Ltd. (Maidenhead). All other ribonucleases used in this study (goat, giraffe, gnu, reindeer, dromedary, kangaroo, lesser rorqual, pig, and horse) were isolated according to Wierenga et al. [7] and rat RNase, according to Beintema et al. [8]. Subtilopeptidase A (Subtilisin Carlsberg) was a gift from Novo Industri (Copenhagen). Sephadex G-50 (fine) was purchased from Pharmacia (Uppsala). All other reagents were analytical grade products from Merck AG (Darmstadt).

Amino acid analysis, high-voltage paper electrophoresis, dansylation, and dansyl—Edman degradation were performed as described earlier [7, 9].


2.1. Preparation of S-peptides


Four mg of ribonuclease in 200 μ l 0.1 M Tris—HC1 pH 8.0 was treated with 0.04 mg (0.16% solution in buffer) of subtilopeptidase A at 0°C. After 60–120 min of digestion, 250 μ l of 0.5 N HCl was added. The mixture was applied to a Sephadex G-50 (fine) column (1 \times 100 cm) and eluted with 0.05 N HCl. The absorbance of the effluent was measured at 280 and 220 nm. The S-peptide peak was lyophilised and further purified by preparative paper electrophoresis at pH 3.5.

3. Results and discussion

The S-peptides from reindeer, kangaroo and dromedary RNase could be obtained easily, using a digestion time of 90 min. The elution patterns were more or less identical (fig. 1A). Digestion times had to be 1 hr for goat and gnu RNases and 2 hr for giraffe

⁺Department of Chemistry, Cornell University, Ithaca, New York, 14850, U.S.A.

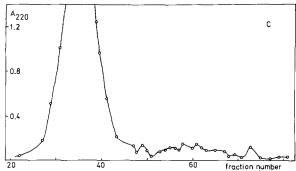


Fig. 1. Gel filtration on a Sephadex G-50 (fine) column (1 \times 100 cm) of pancreatic ribonuclease from dromedary (A), giraffe (B) and lesser rorqual (C) digested with subtilisin. Elution with 0.05 N HCl. Flow rate 15-20 ml/hr; 1.5 ml fractions (\circ — \circ — \circ) A_{220} . S-peptide peak is indicated by bar.

Table 1

Amino acid compositions of S-peptides obtained after cleavage of ribonucleases with subtilisin and subsequent gel filtration on Sephadex G-50 (fine). Nearest integers are given in brackets.

	Goat	Cow	Gnu	Giraffe	Reindeer	Dromedary	Kangaroo
Lys	2.0 (2)	2.1 (2)	1.8 (2)	2.1 (2)	2.0 (2)	1.1 (1)	0.8 (1)
His	0.9(1)	1.0(1)	0.9(1)	1.1(1)	0.9(1)	1.0(1)	1.2(1)
Arg	0.8(1)	1.0(1)	1.2(1)	0.8(1)	1.1(1)	0.8(1)	0.7(1)
Asp*	1.4(1)	1.0(1)	1.5 (1)	1.3(1)	1.2(1)	1.4(1)	1.8(2)
Thr	1.0(1)	1.9 (2)	1.0(1)	0.8(1)		1.1(1)	3.0(3)
Ser	5.3 (5)	2.8 (3)	5.0 (5)	4.2 (4)	3.8 (4)	4.9 (5)	1.9(2)
Glu	2.8 (3)	2.8 (3)	3.1 (3)	3.1 (3)	2.9 (3)	4.0 (4)	5.3 (5)
P ro					2.0(2)		1.3(1)
Gly**	0.6 (-)	0.3(-)	0.3 (-)	0.7(-)	0.4(-)	0.4 (-)	
Ala	4.0 (4)	4.6 (5)	4.0 (4)	2.9 (3)	4.0 (4)	2.2(2)	2.0(2)
Val		0.2 (-)		0.3 (-)			
Met	0.9(1)	0.6(1)	0.7(1)		1.0(1)	1.0(1)	1.3(1)
lle				1.0(1)			
Leu				0.2(-)			
Tyr				0.4 (-)		1.0(1)	
Phe	1.0 (1)	1.0 (1)	1.0(1)	1.0 (1)	1.0 (1)	1.0 (1)	0.8 (1)
Total residues	20	20	20	18	20	19	20

^{*} Some values are too high because of baseline shift and, sometimes, traces of methionine sulfoxide.

^{**} Glycine values were sometimes too high because of contamination from the paper electropherogram.

goat	1 15 204 Lys Glu Ser Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser Ser Thr Ser Ser Ala Ser Ser Ser	5 ı Ala Ala	Lys Phc	Glu	10 Arg (Jln F	His M	ct A	sp Se	S re	r Th	r Ser	r Ser	20↓ Ala	t Ser	Ser		ļ	25 Asn Tyr	25 Tyr
cow	↓ Lys Glu Thr Ala Ala Ala Lys Phe Glu Arg Gln His Met Asp Ser Ser Thr Ser Ala Ala Ser Ser Ser	ı Ala Ala	Lys Phe	Clu	Arg (3ln F	tis M	et A	sp Se	er Se	r Th	ır Seı	r Ala	Ala	Ser	Ser			Asn Tyr	Tyr
nug	Lys, Glu, Ser, Ala, Ala, Ala, Lys, Phe, Glu, Arg, Gln, His, Met, Asp, Ser, Ser, Thr, Ser, Ser, Ala	ı, Ala, Ala,	Lys, Phe	, Glu,	Arg, (3ln, F	Iis, M	et, A	sp, Se	er, Se	ïr, Th	ır, Seı	r, Ser	, Ala	_					
giraffe	↓ Lys Glu Ser Ala Ala Lys Phe Glu Arg Gln His Ile Asp Ser Ser Thr Ser Ser Val Ser Ser Ser	ı Ala Ala	Lys Phe	Clu	Arg (3ln F	His II	le A	sp Se	er Se	ır Th	ı Seı	ر Seı	Val	Ser	Ser	Ser	İ	Asn Tyr	Tyr
reindeer	Lys Glu Ser Ala Ala Lys Phe Glu Arg Gln His Met Asp Pro Ser Pro Ser Ser Ser Ser Ser - Asn Tyr	ı Ala Ala	Lys Phe	Clu	Arg (3ln F	His M	et A	sp P	o Se	r Pro	o Sei	r Ser	Ala	Ser	Ser	Ser	1	Asn	Tyr
dromedary	Ser Glu Thr Ala Ala Glu Lys Phe Glu Arg Gln His Met Asp Ser Tyr Ser Ser Ser, Ser, Asx, Ser	Ala Glu	Lys Phe	Glu	Arg (3h F	tis M	et A	sp Se	ет Ту	/r Se	r Seı	r Ser	Ser,	Ser,	Asx,	Ser		— Asx, Tyr	Tyr
red kangaroo	Glu Thr Pro Ala Glu Lys Phe Gln Arg Gln His Met Asp Asp Glu Thr Ser Thr Ala Ser	o Ala Glu	Lys Phe	Gln	Arg (3m F	His M	et A	sp A	sp G	lu Th	ır Seı	r Th	. Ala	Şer					
horse	Lys Glu Ser Pro Ala Met Lys Phe Glu Arg Gln His Met Asp Ser Gly Ser Thr Ser Ser Asn Pro Thr Asn Tyr	, Ala Met	Lys Phe	Glu	Arg (3ln F	fis M	et A	sp Sc	er G	ly Se	r H	r Ser	Ser	Asn	Pro	Thr .	ĺ	Asn	Tyr
pig	Lys Glu Ser Pro Ala Lys Lys Phe Gln Arg Gln His Met Asp Pro Asp Ser Ser Ser Asn Ser Ser — Asn Tyr	, Ala Lys	Lys Phe	Gln	Arg (Jin F	Iis M	et A	sp P	10 A	sp Se	r Ser	Ser	Ser	ہ Asn	Ser	Ser -	Ì	Asn	Tyr
rat Gly Glu Ser	or Arg Glu Ser Ser Ala Asp Lys Phe Lys Arg Gln His Met Asp Thr Glu Gly Pro Ser Lys Ser Pro Thr Tyr	Ala Asp	Lys Phe	Lys	Arg (Jln F	fis M	et A	Sp TI	hr G	15 12	y Pro	Ser	Lys	ہ Ser	Ser	Pro .	-	Thr	Tyr
lesser rorqual	Arg Glu Ser Pro Ala Met Lys Phe Glu Arg Gln His Met Asp Ser Gly, Asx, Ser, Pro,, Asx, Gly, Pro,, Asx, Tyr	, Ala Met	Lys Phe	Glu	Arg (3ln F	Iis M	et A	sp Se	er G	ly, As	x, Sei	r, Prc	ĺ	Asx,	,Gly,	Pro,	ĺ	Asx,	Tyr
turtle	Glu Thr Arg Tyr Glu Lys Phe Leu Arg Gln His Val Asp Tyr Pro Lys Ser Ser Ala Pro Asp Ser Arg Thr Tyr	g Tyr Glu	Lys Phe	Leu	Arg (3ln F	His V	al A	sp T	yr Pr	0 Ly	/s Sei	r Ser	Ala	Pro	Asp	Ser	Arg	Thr	Туг

Fig. 2 Primary structures of the N-terminal part of ribonucleases from cow [10], horse [11], pig [12,7], rat [13], turtle [14], red kangaroo [14]. The rest of the sequences is determined in our laboratory and will be published elsewhere. In the ribonucleases that are susceptible to cleavage by subtilisin the cleavage points are indicated by arrows. O = carbohydrate chain.

RNase. These elution patterns were comparable to that of giraffe RNase that is shown in fig. 1B. Lesser rorqual, rat, pig, and horse ribonuclease resisted a 120 min subtilisin treatment. The elution pattern obtained after subtilisin digestion of lesser rorqual RNase is shown in fig. 1C.

From the amino acid compositions of the S-peptides (table 1) and sequence information from primary structure studies on the whole ribonuclease molecules — which will be described elsewhere — we derived the primary structure of the isolated S-peptides (fig. 2). This figure also shows the points of cleavage by subtilisin in the RNases attacked. The presence of proline, valine, tyrosine, or glutamic acid in the S-peptide loop does not interfere with the susceptibility to cleavage by subtilisin. However, different sequences are attacked at different positions not easily rationalised from the sequence data. Thus, the change of an alanine in position 20 of goat RNase to a valine in giraffe RNase shifts the cleavage point two residues towards the N-terminus.

The sequences resistant to cleavage by subtilisin are also shown in fig. 2. The reasons for this resistance may be: i) the presence of amino acids incompatible with the substrate binding site of subtilisin; ii) prevention of binding to or hydrolysis by subtilisin due to a different conformation of this part of the RNase, or iii) the presence of carbohydrate attached to Asn 21 in the pig enzyme [15], but not in the horse enzyme [11]. In the latter enzyme, only partial glycosidation is observed.

Empirical methods to predict β-bends using a tetramer [16] or a nonamer [17] correlation have been applied to the sequences known on both sides of the potential cleavage region. The results of the nonamer model (fig. 3) for the rat and turtle enzymes are similar to those for the horse enzyme, whereas the profiles for the cow and reindeer enzymes resemble that of goat RNase. The dromedary profile differs from all others, having a higher-than-average bend probability for all but three of the residues in the region 17–25 (independent of the choice of Asx). The sequences split show a trough in the bend probability around the point of cleavage, whereas bends are predicted in the resistant RNases, with the exception of the pig enzyme. Here, the carbohydrate chain attached to

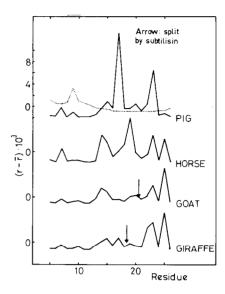


Fig. 3. Bend probability of RNase sequences (r), plotted as $(r-\bar{r})$, where $\bar{r} = (\Sigma r)/n$ [17] A bend is predicted whenever r > r. The dotted line represents the helix probability [17] of horse RNase (plotted as $(h-\bar{h})$). The corresponding profiles of the other enzymes looked similar.

Asn 21 may beimportant. The shift of the split in the giraffe enzyme seems to be correlated to the different conformational properties of valine, reflected in the increased bend probability of residues 22 and 23 (fig. 3). The tetramer prediction algorithm showed a similar result (not shown) with the sequences from fig. 2.

We suggest that, in the S-peptide loop, there may exist minor difference in the three-dimensional structure of the different RNases due to slightly different conformational preferences of different amino acids. Such changes may interfere with the attack by subtilisin.

Acknowledgements

Part of this work has been carried out under auspices of the Netherlands Foundation for Chemical Research (S.O.N.) and with financial aid from the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.).

References

- [1] Richards, F.M. (1955) Compt. rend. trav. lab. Carlsberg 29, 329-343.
- [2] Richards, F.M. and Vithayathil, P.J. (1959) J. Biol. Chem. 234, 1459-1465.
- [3] Hofmann, K., Andreatta, R., Finn, F.M. Montibeller, J. Porcelli, G. and Quattrone, A.J. (1971) Bioorg. Chem. 1, 66-83.
- [4] Borin, G., Marchiori, F., Moroder, L., Rocchi, R. and Scoffone, E. (1971) Biochim. Biophys. Acta 271, 77-79.
- [5] Klee, W.A. and Streaty, R.A. (1970) J. Biol. Chem. 245, 1227-1232.
- [6] Gold, M.H. (1971) Ph. D. Thesis, Buffalo.
- [7] Wierenga, R.K., Huizinga, J.D., Gaastra, W., Welling, G.W. and Beintema, J.J. (1973) FEBS Letters 31, 181-185.
- [8] Beintema, J.J., Campagne, R.N. and Gruber M. (1973) Biochim. Biophys. Acta 310, 148–160.

- [9] Zwiers, H., Scheffer, A.J. and Beintema, J.J. (1973) Eur. J. Biochem. 36, 569-574.
- [10] Smyth, D.G., Stein, W.H., Moore, S. (1963) J. Biol. Chem. 238, 227-234.
- [11] Scheffer, A.J. (1973) Ph. D. Thesis, Groningen.
- [12] Jackson, R.L. and Hirs, C.H.W. (1970). J. Biol. Chem. 245, 637-653.
- [13] Beintema, J.J. and Gruber M. (1973) Biochim. Biophys. Acta 310, 161-173.
- [14] Barnard, E.A., Cohen, M.S., Gold, M.H. and Kim, J.K. (1972) Nature 240, 395-398.
- [15] Jackson, R.L. and Hirs, C.H.W. (1970) J. Biol. Chem. 245, 624-636.
- [16] Lewis, P.N., Momany, F.A. and Scheraga, H.A. (1971) Proc. J. Natl. Acad. Soi. U.S. 68, 2293-2297.
- [17] Burgess, A.W., Ponnuswamy, P.K. and Scheraga, H.A. Isr. J. Chem., in press.